MICROSPONGE AS NOVEL DRUG DELIVERY SYSTEM

Vanshaj*, Ritu Rani, Ajeet Pal Singh & Amar Pal Singh
St. Soldier Institute of Pharmacy, Lidhran Campus, Behind NIT (R.E.C.), Jalandhar -Amritsar by pass, NH-1, Jalandhar -144011, Punjab, India.

Received: 22 Apr 2024 Revised: 28 Apr 2024 Accepted: 08 June 2024

Abstract
Microsponge Frameworks are made up of tiny polymer-based microspheres that can suspend or trap a wide range of substances before being combined to form a specific item such as a gel, cream, fluid, or powder. One of the most recent, new, and profoundly progressing advancements is the microsponge medicate conveyance framework, which provides regulated discharge and location-specific delivery of dynamic fixes. Microsponge medication administration can enhance the efficacy of topicaly dynamic operators. Microsponge as a drug can easily change the pharmaceutical discharge form and advance forward definition solidity while reducing the negative effects of the medication. They are too being utilized to adjust pharmacokinetic parameters. In this review article, we will discuss about microsponge as NDDS, its advantages, methods of formulation and its evaluation.

Keywords: Microsponge, NDDS, Novel drug delivery system, MDS.

This article is licensed under a Creative Commons Attribution-Non-commercial 4.0 International License. Copyright © 2024 Author(s) retains the copyright of this article.

*Corresponding Author
Vanshaj

DOI: https://doi.org/10.47957/ijpda.v12i2.584

Produced and Published by
South Asian Academic Publications

Introduction
Microsponges are polymeric conveyance framework composed of permeable microspheres which having a molecule estimate run of 5-300 μm with a capability to capture a wide run of dynamic fixings and are utilized as a carrier for topical medicate delivery [1]. Microsponge comprise of a horde of interconnection vacuum inside a non-collapsible vacuum structure with a huge permeable surface with an dynamic fixing discharged in a controlled way [2, 3]. Microsponges are outlined to provide a pharmaceutically dynamic fixing effectively at the least measurements additionally to improve soundness, diminish side impacts, and adjust medicate discharge profiles.[1] The measure of the magnifying instrument ranges from 5-300μm in breadth. They can be included into customary measurement shapes such as creams, salves, gels, treatments, tablets and powder [4]. In see of the structure and physiology of human skin, microsponges offer upgraded viability of dermatological operators, as well as decreased neighborhood antagonistic impacts. The characteristic measure of microsponges [5]. Microsponges are steady over a run of pH 1-11 and temperature up to 130°C. Presently, this curiously innovation has been authorized to Cardinal Wellbeing, Inc. for utilize in topical items [6-9]. Pharmaceutical companies have difficulties when it comes to usual dose forms, one of which is the delivery of medication at a predetermined pace and to a certain region in the human body. To address this issue, several NDDS were created. Due to the supply-sort structure of microsponges, a wide range of compounds, including fragrance, emollients, sunscreens, anti-microbials, anti-fungal, anti-acne, and anti-inflammatory agents, may be delivered in a regulated way.[10] Microsponges act as self-sterilising operators since microbes cannot enter into them as their pore estimate is 0.25 mm.[11]

Properties of Microsponges
• They are self-sterilising due to their littler pore estimate.
• They can be effectively consolidated into numerous definitions like creams, salves, gels, treatments, tablets [11].
• These details are steady over extend of pH 1-11 and temperature up to 130°C.  • They are compatible with most vehicles with entrapment up to 50-60%.
• They are free streaming and cost-effective and are appropriated in estimate to retain into the skin.
• It gives persistent activity up to 12 hrs, i.e., expanded discharge.

[14]
The active ingredient is placed in the microsponge [11].

**Advantages of Microspone as NDDS:**
- Pay stack is up to 50 – 60%.
- Free streaming and fetched successful.
- Microsponges are minuscule circles able of retaining skin emissions, subsequently, decreasing sleekness and sparkle from the skin [15].
- To move forward the taking care of of materials, change over liquids into powders.
- Makes strides sedate bioavailability and proficiency of treatment [16-17].
- Microsponges offer assistance in progressing style of the definition.
- Shelf-life and item soundness can be delayed without utilizing additives, since microbes are as well huge to enter into the microsponge.
- Fluids can be changed into free streaming powder, giving fabric taking care of benefits [5].
- Give expanded discharge of medicament and gives nonstop activity up to 12 hrs [10].
- Microsponge conveyance framework is simple to define, they are non-allergic and nontoxic [11].

**Requirements of Materials in Microsponges:**
- It ought to not be water miscible or generally as it were softly dissolvable and idle to monomers.
- It ought to not cause the round structure of the microsponges to break down.
- During Formulation, it ought to not increment the thickness of the blend.
- For materials, the microsponge capability and polymeric pattern must be took for the desired flow rate for a specific amount of time [18].

**Drugs Used in Microspone Delivery System**
- Paracetamol
- Ibuprofen
- Curcumin
- Fluconazole
- Ketoprofen
- Retinol
- Benzoyl peroxide
- Indomethacin

Microsponge as novel drug delivery system explored in various category of drugs such as antibacterial, antifungal, anti-inflammatory, sunscreens, anti-acne, antidepressants etc... [18].

**Methods of Microspone Formulation:**
Microspone stacking of drugs can be tired two ways with a single or two-stage prepare on the premise of the physico-chemical properties of the sedate [19].

**Quasi-Emulsion Dissolvable Dissemination:**
By shifting distinctive amounts of monomers, microsponges are orchestrated utilizing this strategy. Polymer broken up in reasonable dissolvable to plan the inside natural stage taken after by extra item of medicate broken up beneath ultrasonic at 35 ° C. This arrangement made inward stage. The internal stage is poured into the external stage (polyvinyl liquor arrangement in water). The blend is sifted after mixing, to partitioned the microsponges created. The microsponges are dried at a temperature which is consistent with polymer in an discuss warmed broiler [20-22]. This handle is done when the medicate is thermo-labile to resist the polymerization conditions [11].

**Liquid-Liquid Suspension Polymerization:**
Through this polymerizing framework, the monomers are broken up with the dynamic fixings and monomers, i.e. the surfactant in an fitting dissolvable. In expansion to added substances, a suspension specialist is included. Polymerization is started by including a catalyst or by expanding the temperature; at long last, the dissolvable is expelled taking off the permeable circular structure. [23, 24, 25] After polymerization handle, the dissolvable is expelled, confining the microsponges. The confined microsponges are filtered and dried at 40°C for 12 hours [11].

**Different emulsion dissolvable diffusion strategy:** It was created to form permeable and biodegradable microspheres. An fluid internal stage was utilized with the expansion of stearyl amine, and the span was conveyed in arrangement. Tis w/o emulsion is at that point scattered once more in an fluid stage with polyvinyl liquor to create (w/o/w) twofold emulsion. [26].

**Expansion of porogen**
Porogens i.e. hydrogen peroxide were used to supplant the various emulsions. In order to do this, a one-stage structure was created by dissolving the porogen in a polymeric configuration. This framework was then distributed in a liquid step that included poly vinyl liquor. Next, an initiator was used to create different emulsions, and dissolving was assessed by removing the leftover particles to create Microspone [26].

**How Do Microspones Release Drugs?**
With an inflexible form and a complicated network of connections, microsponges are made up of many permeable microspheres. The active ingredient is placed in a closed mold in the vehicle. When the preparation is applied to the desired area of the skin, the active ingredient spreads out from the beads in the form of a vehicle and then onto the skin, making the vehicle unsaturated and imbalanced. This begins a flow of particles from the microspone to the wearer, and from there to the skin, until the material dries or is absorbed. Since then, the microspone particles that were holding the surface of the stratum corneum slowly begin to revitalize the skin, releasing them over time for a long time. This proposed mechanism of action demonstrates the importance of constructing a medium for capturing microsponges. If the active ingredient becomes highly soluble in its preferred vehicle during processing, the product will not be able to obtain the desired release effect. These carry on as dynamic microsponges in
reaction to one or more of the taking after outside triggers included as substitutes inside the vehicle: [27, 28, 18].

Drug release through microsponges can be initiated by the following triggers: [7,9, 17,10].

**Solubility control system**

Diffusion can be used to achieve release while accounting for the partition coefficient of the active element between the microsponge and the external system.

**pH-controlled systems**

pH-based drugs can be released by changing the microsponge coating or by changing the microsponge coating.

**Pressure control system**

Release of the active ingredient from the microsponge occurs by applying pressure or rubbing.

**Temperature control system**

By increasing the skin temperature, the flux and release of active ingredients, which are viscous at room temperature, is increased and improved. Some medications flow out of a porous system too slowly because they are highly viscous at ambient temperature. On the other hand, when the medicine is given topically, the rising body temperature causes the drug's flow rate to rise and its continual release.

**Evaluation of Microsponges**

- **Particle size and size distribution**
  Laser light diffractometry is used to measure the particle sizes of both loaded and unloaded microsponges [10].

**Microsponges morphology and surface topography**

The produced microsponges were coated with gold-palladium at room temperature in an argon environment. SEM is used to examine the surface morphology of microsponges [10,11].

**Production yield & content of drug**

One may determine the total amount of medication and polymer utilized by dividing the mass of the microsponges in practice by their ideal mass. The production yield results from this. To break up microparticles, a predetermined weight of microsponges is dissolved in an appropriate solvent. The drug concentration is then ascertained by ultrasonically scanning the microsponges.

The dispersion is filtered, and a UV-VIS spectrophotometer is used to detect absorbance at the drug's prescribed wavelength [10].

**True Density Determination**

It is measured in a helium gas environment using an ultrapycnometer.

**Entrapment efficiency determination**

Entrapment efficiency is calculated by following equation.

\[ \text{Entrapment Efficiency (\%)} = \frac{\text{amount of drug entrapped in microsponge}}{\text{Total amount of drug used}} \times 100 \]

**In-vitro dissolving data of microsponges**

Is acquired employing a basket dissolving equipment with an upgraded USP XXII and a 5 m durable steel screen. A constant rotating speed of 150 rpm is retained. The samples are drawn out at varying times and subjected to the relevant analytical technique. Dissolution medium is chosen based on the solubility of the active component to maintain optimal sink conditions [10].

**Compatibility studies**

TLC, also known as thin layer and FT-IR spectroscopy have been used to examine the drug's suitability along with reaction adjuncts as well. The effects of polymerization on the crystalline form of the medication were investigated using powder X-ray diffraction (XRD) and Differential Scanning Colorimetry [11].

**Resiliency**

Resiliency of sponges was apparently adjusted to generate beadlets that was softer in line to the demands of the final formulation. Enhanced crosslinking slows release rates [11].

**Applications of Microsponges**

- Microsponges can improve dermatological effectiveness and lessen local side effects due to the unique structure and physiology of human skin. Other applications for microsponges include sunscreens, anti-acne, and anti-inflammatory medicines [11].
- Microsponge for medication delivery in psoriasis. Psoriasis is a persistent inflammatory condition that affects the skin. It reduces the quality of life for ill people. Microsponge as drug delivery has also been investigated as a therapy for psoriasis. To produce Microsponge for the medication mometasonefuroate, an emulsion solvent diffusion technique is used [26].

**Topical Delivery**

Traditional topical preparations quickly absorb an extremely concentrated covering of the active ingredient in the skin. [28] In contrast, microsponge devices are made to efficiently disperse the drug's active component at a low concentration. Topical formulations aim to medicate the outermost layer of the skin layers. The unstructured, porous surface structures that make up a microsponge allow the regulated release of the active substance. As a result, these systems can prevent the unnecessary buildup of active substances in the epidermis and dermis, proving that they can lessen drug-related discomfort and adverse effects without compromising their efficacy. [8] Creams, lotions, or powders can be made using the drug-loaded porous microsponges.
For bone and tissue related engineering
The powder of Polymethyl methacrylate generated bone-like structures that resembled genuine bone after combining with a few specific ingredients in water. The resulting composites resembled microsponges and appeared to have holes in them. When the collagen sponge sheet broke down, the basic fibroblast growth factor (bFGF), which had been added, leaked into the mouse subcutis [26].

In Cosmetics
To prolong the freshness and prevent the discharge of volatile components, microspounge can be used in oral cosmetics like mouthwash and tooth paste.[29] Using microsponge color trapment, a variety of colored beauty products, including red lipsticks, can be made to last longer. Skincare products with marketed formulations that use microsponge delivery systems will help your skin seem lovely and remove extra oil.[30]

Delivery through the eyes
Contrary to water-insoluble pharmaceuticals, which can also be used topically asointments or aqueous suspensions, water-soluble drugs can be applied topically as ointments or aqueous suspensions. The medication is then transported over the blood-aqueous barrier and into the anterior chamber. The medication is carried from the anterior chamber to the trabecular meshwork and Schlemm’s canal, where it is eliminated via aqueous humour turnover [26].

Oral Delivery
It has been demonstrated that Microsponge as drug delivery increases the framework of inadequately soluble medications’ rate of solubilization in oral applications by trapping these compounds in pores. Because the pores are so tiny, the product affects the particles, and A large area of the surface increase expedites several solubilization processes [31]. It is being shown that by trapping weakly soluble drugs in these holes, the microsponges process improves drug solubilisation [32].

Drug-triggering microspongebased delivery systems
The greater efficacy of drugs when formulated as microsponge, improved safety, and improved look of compositions utilized in topical application, generic pharmaceuticals, and self-care products have prompted research into microsponge delivery techniques. Because this administration technique allows the active ingredient to get dispersed gradually over time, it may reduce adverse effects while maintaining therapeutic efficacy.[26]

Conclusion
By encasing a variety of active components, microsponge drug delivery is a unique approach to delivering medications to the intended site in a regulated manner. According to reports, microsponges have a lot of benefits when it comes to medication mutagenicity and discomfort. These microsponges have a lot of potential for the future and can be used to create topical formulations with prolonged release. It is environmentally sustainable, less harmful, and provides a longer release of active medications. Numerous sectors, including wound healing, tissue engineering, and the delivery of biopharmaceuticals, require investigating this new technique.

Acknowledgment
It’s our privilege to express the profound sense of gratitude and cordial thanks to our respected Chairman Mr. Anil Chopra, Vice Chairperson Ms. Sangeeta Chopra and Managing Director Prof. Manhar Arora, St. Soldier Educational Society, Jalandhar for providing the necessary facilities to complete this review/research work.

Conflicts of Interests
There are no conflicts of interest.

Funding
Nil

Authors Contributions
All the authors have contributed equally.

References
2. Won R., Method for delivering an active ingredient bycontrolled time release utilizing a novel delivery vehicle which can be prepared by a process utilizing the active ingredients as a porogen. Patent No. 4690825. US; 1987.


